INFO4FOOD

- Innovating First | A Catalyst for new discoveries -

HIGH PRESSURE CARBON DIOXIDE: A NON-THERMAL PRESERVATION METHOD

HIGH PRESSURE CARBON DIOXIDE METHOD (HPCD)

- Non-thermal novel technology with the application of CO₂ at high pressure
- Valuable method for improved food quality and human nutrition by inactivating microorganisms and some food-related enzymes
- This technology has yet to be developed at industrial scale!

Fig. 2. HPCD installation. PI: Pressure indicator; TI: temperatura indicator; TIC: temperature indicator and controller; BPR: final pressure regulator (Source: DOI:10.1016/j.ijfoodmicro.2012.02.015)

supercritical solid fluid liquid critical point (31.1°C, 7.38MPa) triple point 56.4°C, 0.518MPa) gas temperature (°C)

Fig. 1. Pressure-temperature phase diagram for CO₂

HOW IT WORKS?

- The product to be treated is placed in a container and the CO₂ passes under different operating conditions for different periods of time.
- CO₂ expel the oxygen vital to harmful microorganisms.
- It's applied pressure between 0.1 MPa to 50 MPa at room temperatures or above, depending on the microorganisms.

ADVANTAGES

- CO₂ is inert, non-toxic, no special handling
- Easily available and affordable
- No residues left in the treated product
- **GRAS** solvent
- Less sophisticated equipment comparing with other technology

DISADVANTAGES

- Some foods can suffer acidification
- Matrices w/ higher content of lipids & fats decrease the penetration of CO₂
- Extraction of volatile compounds
- Changes in color and odor

- **Environment**
- Solid material (polymers, medical instruments)
- Liquids (foodstuffs and medicines)

PRODUCT PRESERVATION

Efficient in inactivation of a wide range microorganisms:

Bacteria

(Lactic acid bacteria, Listeria monocytogenes, Staphylococcus spp., Enterobacteria)

Endoscospores (combined w/ high temperatures or small amounts of additives)

(Alicyclobacillus acidoterrestris; Bacillus spp.; Geobacillus stearothermophilus))

Efficient in inactivation of certain enzymes (polyphenol, oxidase, peroxidase)

Yeasts and molds

Bacteriophages

